Yahoo Answers จะปิดใช้งานในวันที่ 4 พฤษภาคม 2021 (เวลาตะวันออก) และเริ่มเปิดใช้งานวันที่ 20 เมษายน 2021 (เวลาตะวันออก) เว็บไซต์ Yahoo Answers จะอยู่ในโหมดอ่านอย่างเดียว คุณสมบัติหรือบริการอื่นๆ ของ Yahoo หรือบัญชี Yahoo ของคุณจะไม่มีการเปลี่ยนแปลงใดๆ คุณสามารถค้นหาข้อมูลเพิ่มเติมเกี่ยวกับการปิดใช้งาน Yahoo Answers และวิธีการดาวน์โหลดข้อมูลของคุณในหน้าความช่วยเหลือนี้
Cardinality and Power set?
These are some confusing questions I came across. What are the answers and is there any rule that can be used when there are nested sets as shown below?
What is the power set of {{},{{}}}?
What is the cardinality of {a,{a}}?
What is the cardinality of {{a}}?
What is the cardinality of {a,{a},{a,{a}}}?
3 คำตอบ
- JCSLv 51 ทศวรรษ ที่ผ่านมาคำตอบที่โปรดปราน
Given an n-element set, the cardinality of its power set is 2^n; with this, you should be able to solve the last three questions; for example, in the third question, you have the set A = {{a}}, which has only one element: {a}; therefore, its power set must have 2^1 = 2 elements, and these must be the empty set (its a subset of any set), and the set A himself (because A is always a subset of himself); if you have a set with more than an element, then its proper subsets must be included too.
Regarding the power of the first question's set, it's helpful to change the notation a little to:
{{},{{}}} = {∅ {∅}}
Which is somewhat less messy; now its easier to see that this is a set with only two elements, which means that its power must have 4 elements, and these are:
∅, {∅}, {{∅}}, {∅,{∅}}
As for an algorithm, you may try this if the cardinality of your set A is not too high: list its elements in a row, and below the 2^n binary sequences; now there is a bijection between these and the subsets of A: take a sequence and form the corresponding subset by selecting the elements corresponding to the 1's in the sequence; try with the example above.
- haperLv 45 ปี ที่ผ่านมา
purely record all subsets. for instance {Earth, solar} should be one subset. The set whose aspects are each and each and every of the subsets is the potential set. there'll be 2^3 = 8 aspects interior the potential set. do not overlook the empty set is a subset of each and every set, and cardinality for finite units is purely the count number of ways many aspects are interior the set. also, for instance, the set {{Earth,Moon}, {Earth,solar}} has 2 aspects no longer 3. those 2 aspects are: {Earth,Moon} and {Earth,solar}.